
Libft
Your very first own library

Summary:
This project is about coding a C library.

It will contain a lot of general purpose functions your programs will rely upon.

Version: 16

Contents
I Introduction 2

II Common Instructions 3

III Mandatory part 5
III.1 Technical considerations . 5
III.2 Part 1 - Libc functions . 6
III.3 Part 2 - Additional functions . 7

IV Bonus part 11

V Submission and peer-evaluation 15

1

Chapter I

Introduction

C programming can be very tedious when one doesn’t have access to the highly useful
standard functions. This project is about understanding the way these functions work,
implementing and learning to use them. Your will create your own library. It will be
helpful since you will use it in your next C school assignments.

Take the time to expand your libft throughout the year. However, when working
on a new project, don’t forget to ensure the functions used in your library are allowed in
the project guidelines.

2

Chapter II

Common Instructions

• Your project must be written in C.

• Your project must be written in accordance with the Norm. If you have bonus
files/functions, they are included in the norm check and you will receive a 0 if there
is a norm error inside.

• Your functions should not quit unexpectedly (segmentation fault, bus error, double
free, etc) apart from undefined behaviors. If this happens, your project will be
considered non functional and will receive a 0 during the evaluation.

• All heap allocated memory space must be properly freed when necessary. No leaks
will be tolerated.

• If the subject requires it, you must submit a Makefile which will compile your
source files to the required output with the flags -Wall, -Wextra and -Werror, use
cc, and your Makefile must not relink.

• Your Makefile must at least contain the rules $(NAME), all, clean, fclean and
re.

• To turn in bonuses to your project, you must include a rule bonus to your Makefile,
which will add all the various headers, librairies or functions that are forbidden on
the main part of the project. Bonuses must be in a different file _bonus.{c/h} if
the subject does not specify anything else. Mandatory and bonus part evaluation
is done separately.

• If your project allows you to use your libft, you must copy its sources and its
associated Makefile in a libft folder with its associated Makefile. Your project’s
Makefile must compile the library by using its Makefile, then compile the project.

• We encourage you to create test programs for your project even though this work
won’t have to be submitted and won’t be graded. It will give you a chance
to easily test your work and your peers’ work. You will find those tests especially
useful during your defence. Indeed, during defence, you are free to use your tests
and/or the tests of the peer you are evaluating.

• Submit your work to your assigned git repository. Only the work in the git reposi-
tory will be graded. If Deepthought is assigned to grade your work, it will be done

3

Libft Your very first own library

after your peer-evaluations. If an error happens in any section of your work during
Deepthought’s grading, the evaluation will stop.

4

Chapter III

Mandatory part

Program name libft.a
Turn in files Makefile, libft.h, ft_*.c
Makefile NAME, all, clean, fclean, re
External functs. Detailed below
Libft authorized n/a
Description Write your own library: a collection of functions

that will be a useful tool for your cursus.

III.1 Technical considerations
• Declaring global variables is forbidden.

• If you need helper functions to split a more complex function, define them as static
functions. This way, their scope will be limited to the appropriate file.

• Place all your files at the root of your repository.

• Turning in unused files is forbidden.

• Every .c files must compile with the flags -Wall -Wextra -Werror.

• You must use the command ar to create your library. Using the libtool command
is forbidden.

• Your libft.a has to be created at the root of your repository.

5

Libft Your very first own library

III.2 Part 1 - Libc functions
To begin, you must redo a set of functions from the libc. Your functions will have the
same prototypes and implement the same behaviors as the originals. They must comply
with the way they are defined in their man. The only difference will be their names. They
will begin with the ’ft_’ prefix. For instance, strlen becomes ft_strlen.

Some of the functions’ prototypes you have to redo use the ’restrict’
qualifier. This keyword is part of the c99 standard. It is
therefore forbidden to include it in your own prototypes and to
compile your code with the -std=c99 flag.

You must write your own function implementing the following original ones. They do
not require any external functions:

• isalpha

• isdigit

• isalnum

• isascii

• isprint

• strlen

• memset

• bzero

• memcpy

• memmove

• strlcpy

• strlcat

• toupper

• tolower

• strchr

• strrchr

• strncmp

• memchr

• memcmp

• strnstr

• atoi

In order to implement the two following functions, you will use malloc():

• calloc

• strdup

6

Libft Your very first own library

III.3 Part 2 - Additional functions
In this second part, you must develop a set of functions that are either not in the libc,
or that are part of it but in a different form.

Some of the following functions can be useful for writing the
functions of Part 1.

Function name ft_substr
Prototype char *ft_substr(char const *s, unsigned int start,

size_t len);
Turn in files -
Parameters s: The string from which to create the substring.

start: The start index of the substring in the
string ’s’.
len: The maximum length of the substring.

Return value The substring.
NULL if the allocation fails.

External functs. malloc
Description Allocates (with malloc(3)) and returns a substring

from the string ’s’.
The substring begins at index ’start’ and is of
maximum size ’len’.

Function name ft_strjoin
Prototype char *ft_strjoin(char const *s1, char const *s2);
Turn in files -
Parameters s1: The prefix string.

s2: The suffix string.
Return value The new string.

NULL if the allocation fails.
External functs. malloc
Description Allocates (with malloc(3)) and returns a new

string, which is the result of the concatenation
of ’s1’ and ’s2’.

7

Libft Your very first own library

Function name ft_strtrim
Prototype char *ft_strtrim(char const *s1, char const *set);
Turn in files -
Parameters s1: The string to be trimmed.

set: The reference set of characters to trim.
Return value The trimmed string.

NULL if the allocation fails.
External functs. malloc
Description Allocates (with malloc(3)) and returns a copy of

’s1’ with the characters specified in ’set’ removed
from the beginning and the end of the string.

Function name ft_split
Prototype char **ft_split(char const *s, char c);
Turn in files -
Parameters s: The string to be split.

c: The delimiter character.
Return value The array of new strings resulting from the split.

NULL if the allocation fails.
External functs. malloc, free
Description Allocates (with malloc(3)) and returns an array

of strings obtained by splitting ’s’ using the
character ’c’ as a delimiter. The array must end
with a NULL pointer.

Function name ft_itoa
Prototype char *ft_itoa(int n);
Turn in files -
Parameters n: the integer to convert.
Return value The string representing the integer.

NULL if the allocation fails.
External functs. malloc
Description Allocates (with malloc(3)) and returns a string

representing the integer received as an argument.
Negative numbers must be handled.

8

Libft Your very first own library

Function name ft_strmapi
Prototype char *ft_strmapi(char const *s, char (*f)(unsigned

int, char));
Turn in files -
Parameters s: The string on which to iterate.

f: The function to apply to each character.
Return value The string created from the successive applications

of ’f’.
Returns NULL if the allocation fails.

External functs. malloc
Description Applies the function ’f’ to each character of the

string ’s’, and passing its index as first argument
to create a new string (with malloc(3)) resulting
from successive applications of ’f’.

Function name ft_striteri
Prototype void ft_striteri(char *s, void (*f)(unsigned int,

char*));
Turn in files -
Parameters s: The string on which to iterate.

f: The function to apply to each character.
Return value None
External functs. None
Description Applies the function ’f’ on each character of

the string passed as argument, passing its index
as first argument. Each character is passed by
address to ’f’ to be modified if necessary.

Function name ft_putchar_fd
Prototype void ft_putchar_fd(char c, int fd);
Turn in files -
Parameters c: The character to output.

fd: The file descriptor on which to write.
Return value None
External functs. write
Description Outputs the character ’c’ to the given file

descriptor.

9

Libft Your very first own library

Function name ft_putstr_fd
Prototype void ft_putstr_fd(char *s, int fd);
Turn in files -
Parameters s: The string to output.

fd: The file descriptor on which to write.
Return value None
External functs. write
Description Outputs the string ’s’ to the given file

descriptor.

Function name ft_putendl_fd
Prototype void ft_putendl_fd(char *s, int fd);
Turn in files -
Parameters s: The string to output.

fd: The file descriptor on which to write.
Return value None
External functs. write
Description Outputs the string ’s’ to the given file descriptor

followed by a newline.

Function name ft_putnbr_fd
Prototype void ft_putnbr_fd(int n, int fd);
Turn in files -
Parameters n: The integer to output.

fd: The file descriptor on which to write.
Return value None
External functs. write
Description Outputs the integer ’n’ to the given file

descriptor.

10

Chapter IV

Bonus part

If you completed the mandatory part, do not hesitate to go further by doing this extra
one. It will bring bonus points if passed successfully.

Functions to manipulate memory and strings is very useful. But you will soon discover
that manipulating lists is even more useful.

You have to use the following structure to represent a node of your list. Add its
declaration to your libft.h file:

typedef struct s_list
{

void *content;
struct s_list *next;

} t_list;

The members of the t_list struct are:

• content: The data contained in the node.
void * allows to store any kind of data.

• next: The address of the next node, or NULL if the next node is the last one.

In your Makefile, add a make bonus rule to add the bonus functions to your libft.a.

The bonus part will only be assessed if the mandatory part is
PERFECT. Perfect means the mandatory part has been integrally done
and works without malfunctioning. If you have not passed ALL the
mandatory requirements, your bonus part will not be evaluated at all.

11

Libft Your very first own library

Implement the following functions in order to easily use your lists.

Function name ft_lstnew
Prototype t_list *ft_lstnew(void *content);
Turn in files -
Parameters content: The content to create the node with.
Return value The new node
External functs. malloc
Description Allocates (with malloc(3)) and returns a new node.

The member variable ’content’ is initialized with
the value of the parameter ’content’. The variable
’next’ is initialized to NULL.

Function name ft_lstadd_front
Prototype void ft_lstadd_front(t_list **lst, t_list *new);
Turn in files -
Parameters lst: The address of a pointer to the first link of

a list.
new: The address of a pointer to the node to be
added to the list.

Return value None
External functs. None
Description Adds the node ’new’ at the beginning of the list.

Function name ft_lstsize
Prototype int ft_lstsize(t_list *lst);
Turn in files -
Parameters lst: The beginning of the list.
Return value The length of the list
External functs. None
Description Counts the number of nodes in a list.

Function name ft_lstlast
Prototype t_list *ft_lstlast(t_list *lst);
Turn in files -
Parameters lst: The beginning of the list.
Return value Last node of the list
External functs. None
Description Returns the last node of the list.

12

Libft Your very first own library

Function name ft_lstadd_back
Prototype void ft_lstadd_back(t_list **lst, t_list *new);
Turn in files -
Parameters lst: The address of a pointer to the first link of

a list.
new: The address of a pointer to the node to be
added to the list.

Return value None
External functs. None
Description Adds the node ’new’ at the end of the list.

Function name ft_lstdelone
Prototype void ft_lstdelone(t_list *lst, void (*del)(void

*));
Turn in files -
Parameters lst: The node to free.

del: The address of the function used to delete
the content.

Return value None
External functs. free
Description Takes as a parameter a node and frees the memory of

the node’s content using the function ’del’ given
as a parameter and free the node. The memory of
’next’ must not be freed.

Function name ft_lstclear
Prototype void ft_lstclear(t_list **lst, void (*del)(void

*));
Turn in files -
Parameters lst: The address of a pointer to a node.

del: The address of the function used to delete
the content of the node.

Return value None
External functs. free
Description Deletes and frees the given node and every

successor of that node, using the function ’del’
and free(3).
Finally, the pointer to the list must be set to
NULL.

13

Libft Your very first own library

Function name ft_lstiter
Prototype void ft_lstiter(t_list *lst, void (*f)(void *));
Turn in files -
Parameters lst: The address of a pointer to a node.

f: The address of the function used to iterate on
the list.

Return value None
External functs. None
Description Iterates the list ’lst’ and applies the function

’f’ on the content of each node.

Function name ft_lstmap
Prototype t_list *ft_lstmap(t_list *lst, void *(*f)(void *),

void (*del)(void *));
Turn in files -
Parameters lst: The address of a pointer to a node.

f: The address of the function used to iterate on
the list.
del: The address of the function used to delete
the content of a node if needed.

Return value The new list.
NULL if the allocation fails.

External functs. malloc, free
Description Iterates the list ’lst’ and applies the function

’f’ on the content of each node. Creates a new
list resulting of the successive applications of
the function ’f’. The ’del’ function is used to
delete the content of a node if needed.

14

Chapter V

Submission and peer-evaluation

Turn in your assignment in your Git repository as usual. Only the work inside your repos-
itory will be evaluated during the defense. Don’t hesitate to double check the names of
your files to ensure they are correct.

Place all your files at the root of your repository.

Rnpu cebwrpg bs gur 97 Pbzzba Pber pbagnvaf na rapbqrq uvag. Sbe
rnpu pvepyr, bayl bar cebwrpg cebivqrf gur pbeerpg uvag arrqrq sbe
gur arkg pvepyr. Guvf punyyratr vf vaqvivqhny, gurer vf bayl n
cevmr sbe bar fghqrag jvaare cebivqvat nyy qrpbqrq zrffntrf. Nal
nqinagntrq crbcyr pna cynl, yvxr pheerag be sbezre fgnss, ohg gur
cevmr jvyy erznva flzobyvp. Gur uvag sbe guvf svefg cebwrpg vf:
Ynetr pbjf trarebfvgl pbzrf jvgu punegf naq sbhe oybaqr ungf gb qrsl
hccre tenivgl ureb

15

	Introduction
	Common Instructions
	Mandatory part
	Technical considerations
	Part 1 - Libc functions
	Part 2 - Additional functions

	Bonus part
	Submission and peer-evaluation

